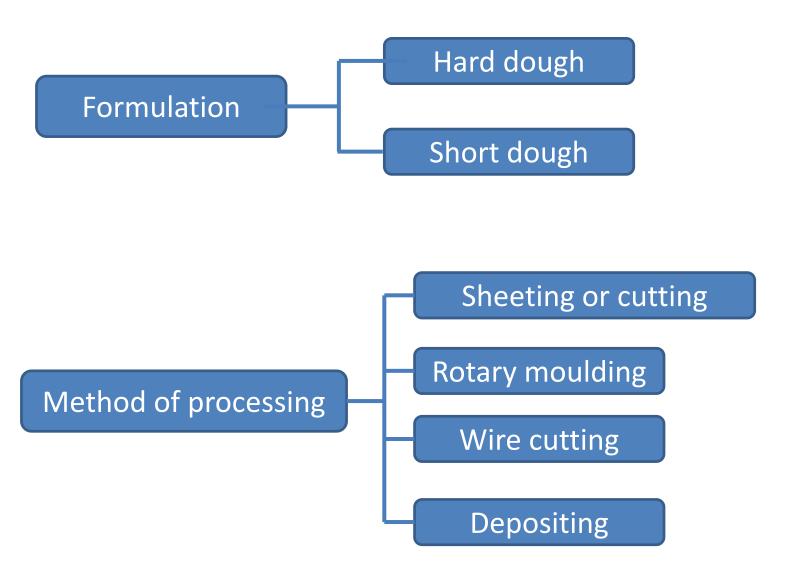
Grain Processing Technologies Class 6 – September 12th, 2017

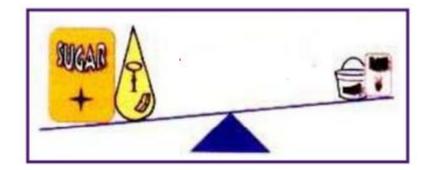
Crackers, biscuits and cookies – processing and factors that affect quality parameters and consumer's acceptability

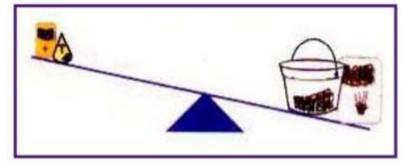

Dr. Shanise Lisie Mello El Halal

CLASSIFICATION OF BISCUITS (OR COOKIES)

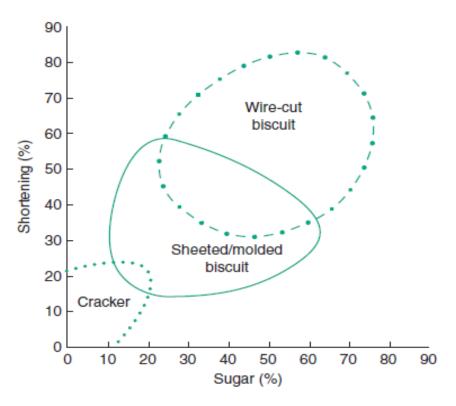
Source: Wrigley et al., Encyclopedia of Grain Science, Cookies, Biscuits, and Crackers, 2002.

Figure 1.15 Rotary moulder from Dingson Food Machinery.


Figure 3.1 Rotary moulding roll engraving.


Figure 1.21 Baker Perkins wire-cut machine.

Products are categorized by the balance of flour, sugar, fat & water


- High levels of sugar & fat, relative to flour
- Dough remains more fluid & less structure is developed

- High levels of water & flour, low levels of sugar & fat
- Dough develops a firm structure by gluten development

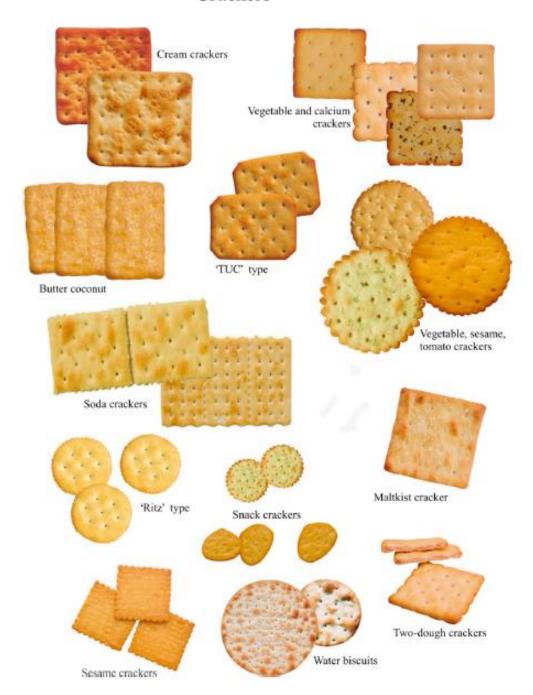

Products are categorized by the balance of flour, sugar, fat & water

Figure 1 Biscuit composition in relation to sugar and shortening, based on 100 parts flour. (Each dough is processed according to its consistency or water content.) (Reproduced from Encyclopedia of Food Sciences and Nutrition, 2nd Edition (2003), p. 534, Elsevier Ltd.)

Source: Wrigley et al., Encyclopedia of Grain Science, Cookies, Biscuits, and Crackers, 2002.

Crackers

CRACKERS

 Crackers are a wide range of products characterised by crispy, open texture and savoury flavours.

Products are categorized by the balance of flour, sugar, fat & water

Formulation

The 'Major Ingredients' used are:

	WATER	sugar	FLOUR	oil
Crackers	Very High	Very Low	Strong	Low
	High	Medium	Medium	Medium
	Medium	Slightly Higher	Medium	Medium

Products are categorized by the balance of flour, sugar, fat & water

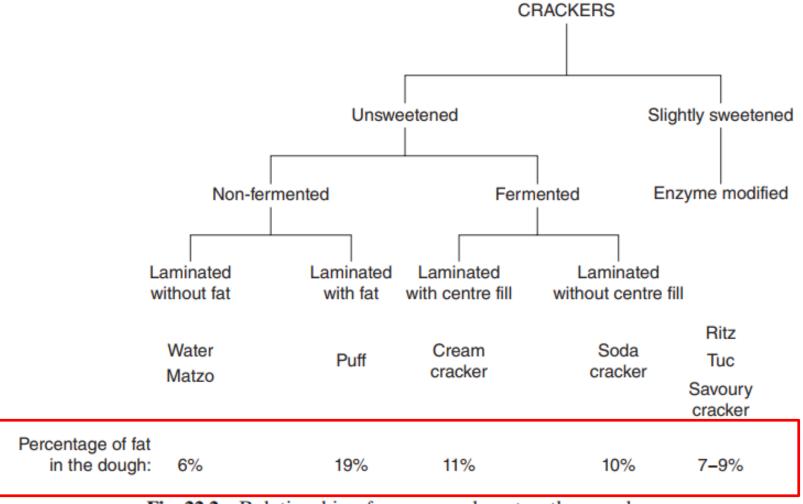
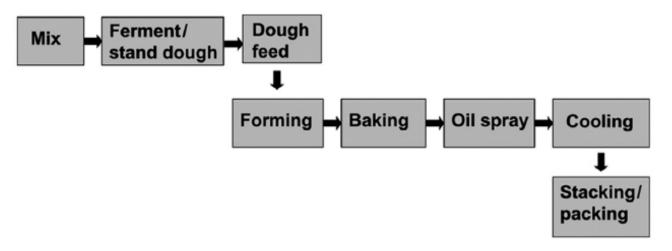



Fig. 22.2 Relationship of cream crackers to other crackers.

TYPICAL PROCESS FLOW FOR CRACKERS

Figure 1.1 Typical process flow for crackers. Mixing and fermentation are usually batch processes, forming, baking, oil spray and cooling are continuous in-line processes.

FEATURES WHICH INFLUENCE THE BAKING PROCESS

In general, crackers may have some of the following features which influence the baking process:

- Doughs which are leavened and fermented with ingredients such as yeast, ammonia and sodium bicarbonate.
- Doughs generally have a high water content (15–25%).
- Cracker doughs are laminated (the dough sheet is made up from multiple thin layers).

FEATURES WHICH INFLUENCE THE BAKING PROCESS

 Some crackers are cut and baked in strips or complete sheets and broken into individual biscuits after baking.

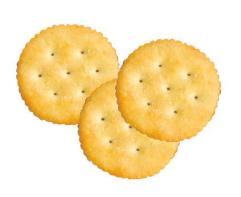

 Some crackers require a colour contrast between dark blisters and a pale background colour.

Figure 3.4 Crackers cut in strips.

Snack crackers are successful in every market: light and crispy with oil spray.

Flour	100.00
Sugar	8.02
High-fructose corn syrup	2.85
Vegetable oil (soya bean)	11.66
Lecithin	0.20
Ammonium bicarbonate	1.84
Sodium bicarbonate	1.08
Acid calcium phosphate	1.08
Salt	0.77
Enzyme	0.01
Water	29.47

Critical Ingredients

- 1. Flour should be weak with a protein content of 8-9%
- 2. Proteolytic enzyme.

Mixing

An 'all in' mix on a horizontal mixer Temperature of about 33°C for enzyme doughs.

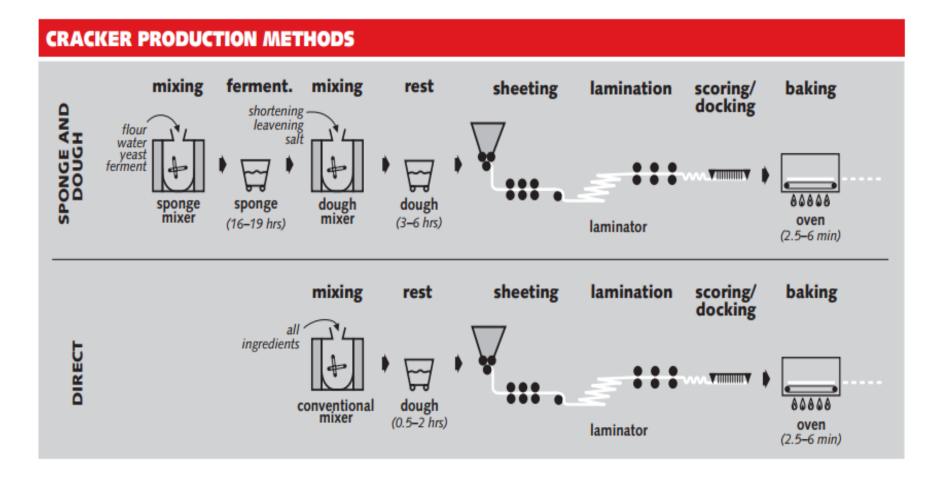
Standing Time

Forming

Figure 1.4 Baker Perkins horizontal high-speed mixer with shaft-less blade.

The dough is laminated with four laminations, approximately 4 mm thick No fat/flour filling is used

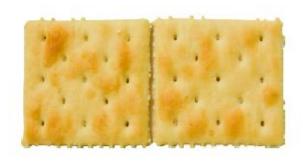
Baking


Figure 1.5 Baker Perkins forming line: (right to left) laminator, three gauge roll units, relaxation conveyor, rotary cutter, scrap lift and return conveyors.

Soda crackers are a traditional product in the United States, where they are made in very large volumes. Similar crackers are the Biscuits 'Saltine' or 'Premium' crackers.

Important characteristics:

- A two-stage mixing process known as 'sponge and dough'
- A long fermentation, usually 24 hours
- Fast baking time, around 2.5 minutes, on a heavy mesh preheated oven band


- Critical Ingredients
- A strong flour will give an open cracker texture.
- The flour used in the sponge must be 10–11% protein.
- Stronger flour gives a harder cracker. A weaker flour (8.0–9.0% protein) is usually used for the dough and will give a product with a softer bite.

1.3.3 Formulation

1.3.3.1 Sponge

Flour (strong)	66.7
Fresh yeast	0.17
Dough fat	5.00
Lecithin	0.53
Malt extract 80%	0.95
Water	28.0

1.3.3.2 Dough

Sponge (follow the formulation as described in Section 1.3.3.1)

Flour (weak)	33.3
Dough fat	5.00
Soda	0.60
Salt	1.50

BISCUITS

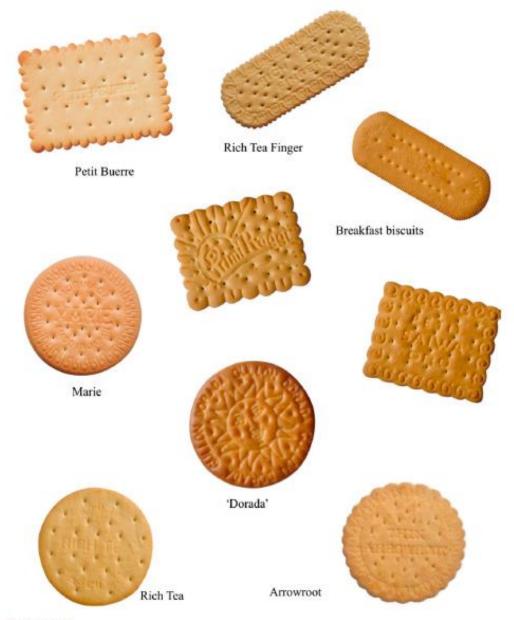


Figure 1.9

HARD SWEET BISCUITS

Doughs for hard sweet biscuits have the following features:

- Doughs have strong, developed gluten which gives an elastic dough, which is sheeted and cut. It often shrinks in the first stage of baking
- Doughs have low sugar and fat
- Doughs have water contents typically of around 12%

HARD SWEET BISCUITS

 Humidity in the first part of the baking is important to achieve good volume and a smooth surface sheen;

• Biscuits are baked to low moisture contents, around 1.5–3.0%.

PROCESS FOR HARD SWEET BISCUITS

Marie is a classic biscuit made throughout Europe and Asia. It has a light, crisp, delicate texture, with pale colour and clear smooth surface.

1.5.3 Formulation

Flour	100.00
Cornflour	4.41
Maize flour	14.70
Granulated sugar	25.59
Invert syrup 80%	7.94
Shortening	11.03
Lecithin	0.57
Salt	0.88
Soda	0.67
Acid calcium phosphate	0.08
Protease	0.02
SMS 10% solution	0.02
Ammonium bicarbonate	0.73
Water	26.47

- Medium protein flour
- Medium protein flour and contain sodium metabisulphate (SMS) to develop a soft extensible dough.

PROCESS FOR HARD SWEET BISCUITS

Critical Ingredients

- 1. Flour should not exceed 9.0% protein. Higher protein will result in a hard biscuit;
- 2. Corn flour are used to reduce the total gluten content and make a more tender eating biscuit
- 3. SMS will modify the protein to make a soft extensible dough.

Cookies

COOKIES

- Very soft doughs which are deposited directly onto the oven band;
- High fat and sugar recipes;
- Long baking times with relatively low baking temperatures
- High humidity is required in the first oven zones to allow the dough to spread on the oven band.

PROCESS FOR A CHOCOLATE CHIP COOKIE

Short cookies with inclusions of chocolate chips or nuts.

1.10.3 Formulation

Flour	100.00
Shortening	55.98
Granulated sugar	50.05
Brown sugar	0.76
Whole egg powder	1.24
Vanillin	0.10
Invert syrup	1.24
Salt	0.96
Ammonium bicarbonate	0.29
Sodium bicarbonate	0.67
Chocolate chips	30.00
Water	19.14

INGREDIENTS

Wheat Flour

2.2.2 Wheat Flours: Typical Specifications

Wheat Gluten

% of protein determines the flour strength

Table 2.1 Property	Soft flour (%)	Medium flour (%)	Strong flour (%)
Protein	8.0	10.3	13.2
Wet gluten	25.0	26.0	31.0
Fat	0.0	1.0	2.4
Carbohydrate	80.0	76.3	66.9
Ash	0.3	0.5	0.5
Water absorption	53.0	58.0	60.0

Protein content:

- Strength and elasticity
- Crackers are made with strong flour

Starch

- Rigidity and texture of the biscuit
- Dextrinisation = Colouring of the

biscuit

INGREDIENTS

Sugar

- Sweetness
- ■Texture
- Inhibit starch Gelatinisation and gluten formation

Leavening Agents

- ■Yeast is normally used Used in the production of cream crackers
- ■The yeast is most active at temperatures of 30–35°C during
- ■Sodium bicarbonate
- ■Ammonium bicarbonate

INGREDIENTS

Fats

- Act as lubricants
- ■Tendetizant agent
- Provides texture/structure to the product
- Act as aerating agents
- •Eating quality (palability)
- Moisture-barrier in finished products

Is Water an Ingredient?

BAKING: THE DEVELOPMENT OF THE BISCUIT STRUCTURE AND TEXTURE

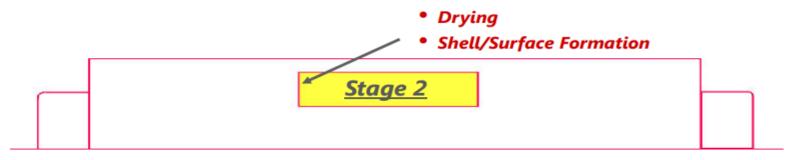
Changes during the baking process

Biscuit Structure Moisture Content Color

- Textura
- Density/volume
- •Flavour

BAKING: THE DEVELOPMENT OF THE BISCUIT STRUCTURE AND TEXTURE

Stage 1: Structure Development Front End Heat is Critical


- Ammonia, carbon dioxide gases & water vapor are formed and released. These cause the cracker to 'lift'.
 - Dimension development
 - Stack height
 - Gases expand & give more 'lift'
 - Structure development
 - Ammonia aroma carried away by gas bubbles

Stage 1 Structure Development

BAKING: THE DEVELOPMENT OF THE BISCUIT STRUCTURE AND TEXTURE

Stage 2: Moisture Removal

- Continues to remove 'free water' from the dough piece
- Maximum gas/dough piece expansion achieved
- Product volume relaxes
- Fixing the product structure: Starch gelatinização Gluten proteins change (denaturize)
- Crusting of the product surface begins


 If crusting of the surface begins too early in the second stage, 'blisters' may result

Stage 3: Color Development

- Majority of moisture removed during Stages 1 & 2 and coloring now occurs
- Structure is fully set and product is firm
- The color develops due to: Sugar caramelization protein reactions

(Maillard browning)

• These also develop flavor

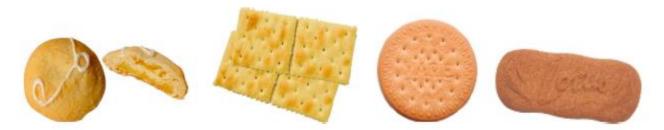
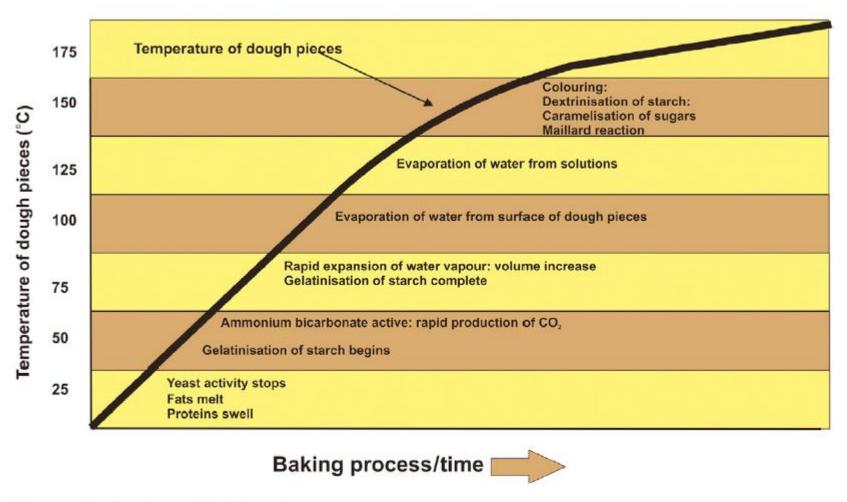
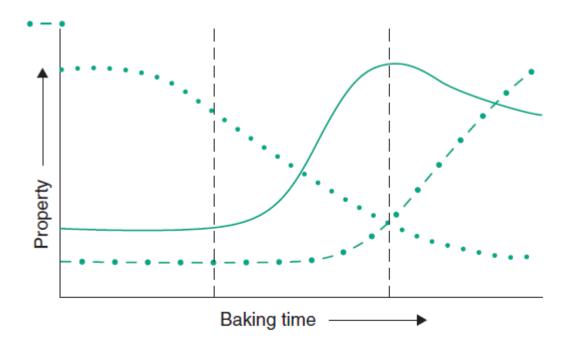
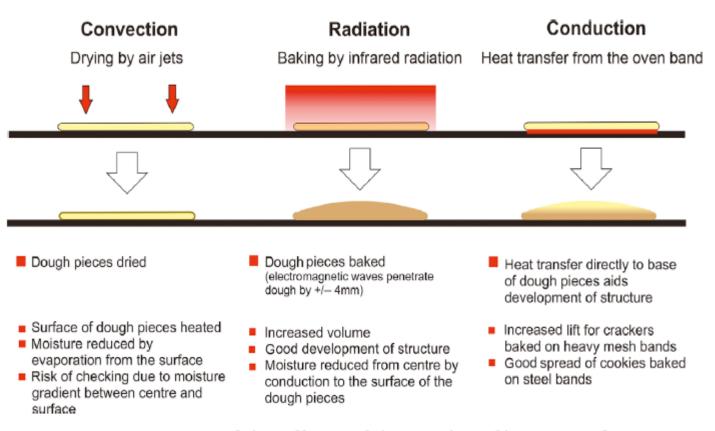


Figure 2.2 Wide variety of biscuit textures, densities, bites and flavours.

Figure 2.3 Variety of biscuit colours and highlighting.

Source: DAVIDSON, I. Biscuit Baking Technology. 2nd Edition, 2016.


Figure 2.4 After W. Mowbray.

Source: DAVIDSON, I. Biscuit Baking Technology. 2nd Edition, 2016.

Figure 2 Physical changes in biscuits during baking. Key: • – •, color; ——, thickness; • • •, weight. (Reproduced from Encyclopedia of Food Sciences and Nutrition, 2nd Edition (2003), p. 537, Elsevier Ltd.)

MODES OF HEAT TRANSFER

Figure 4.12 Summary of the effects of the modes of heat transfer.

Source: DAVIDSON, I. Biscuit Baking Technology. 2nd Edition, 2016.

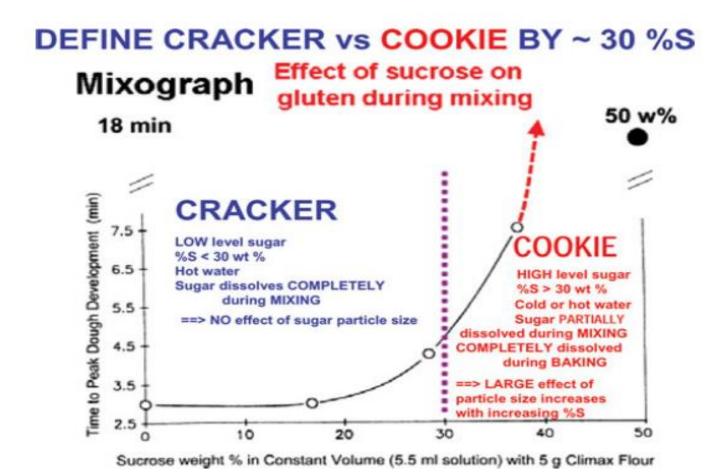
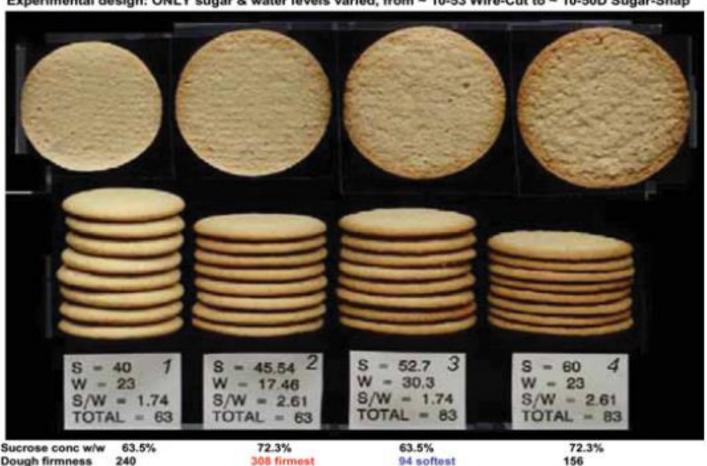



Figure 5 Mixograph results, as a function of sucrose concentration in model doughs, revealing distinctions between cracker- versus cookie-making (Slade et al., 2006). (Color figure available online.)

(A)

Experimental design: ONLY sugar & water levels varied, from ~ 10-53 Wire-Cut to ~ 10-50D Sugar-Snap

CRACKER BAKING PERFORMANCE THE PROCESS IS A PRIMARY CRITICAL FACTOR !!

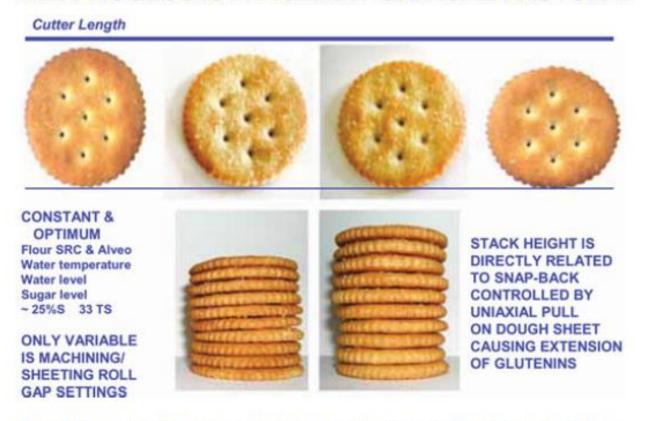
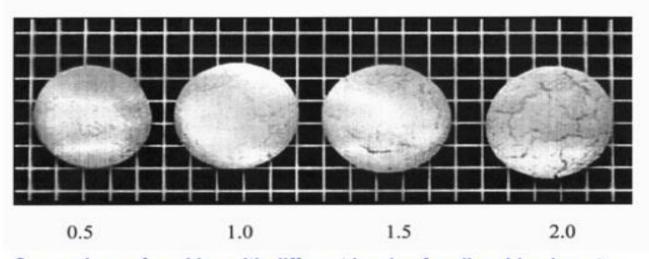



Figure 9 Cracker-baking results illustrating the primary importance of processing (in particular, dough-machining) on baking performance (Slade et al., 2006). (Color figure available online.)

COLLAPSE AND SURFACE CRACK

Comparison of cookies with different levels of sodium bicarbonate (Ib per flour cwt) using a constant level of acid in the formula to generate corresponding extents of vertical expansion during baking, in order to demonstrate that the cause of cookie surface crack is COLLAPSE, not sugar recrystallization nor surface drying.

Figure 12 Leavening agents such as sodium bicarbonate contribute to cookie collapse and surface-crack formation during baking (Slade et al., 2006). (Color figure available online.)

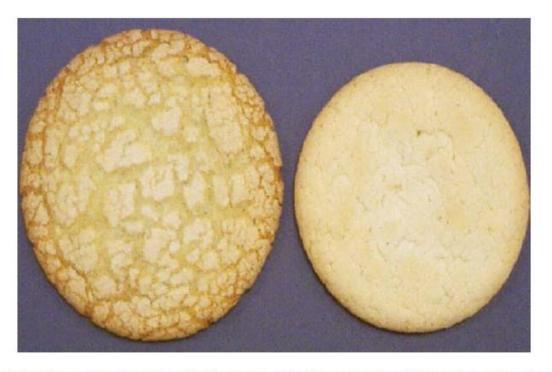
EFFECT OF SUGAR TYPE: AACC 10-50D SUGAR SNAP COOKIE BAKING > VERY HIGH %S * SUCROSE 185 mm FRUCTOSE 77 mm Perfect Symmetry No gluten development during mixing 85 mm 77 mm Small width Starch gelatinzation/ Cutter pasting during baking Diameter 60 mm Asymmetry L << W GLUCOSE · H₂O XYLOSE 65 mm 60 mm Gluten development during mixing → Snap-back 67 mm 74 mm

Figure 13 Effects of sugar type on sugar-snap cookie baking (Slade et al., 2006). (Color figure available online.)

Very high %S (sugar concentration)

Sugar functionality

to exaggerate


EFFECT OF SUGAR PARTICLE SIZE:

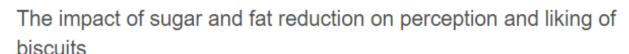
AACC 10-50D SUGAR SNAP COOKIE BAKING WERY HIGH %S *

Same flour, same formula, same process Sucrose ONLY same solubility in water So baking performance is ONLY effect of sugar particle size Larger particle size delays sugar dissolution during mixing AND EVEN during baking !!!! Greater starch gelatinization/pasting smaller cookie size Danger = learn about sugar functionality, NOT flour functionality with 10-50D MEDIUM EXTRA FINE BAKER'S SPECIAL

Figure 15 Effect of sucrose particle size on cookie-baking performance (Slade et al., 2006). (Color figure available online.)

^{*} Very high %S (sugar concentration) to exaggerate SUGAT functionality

Figure 4 Cookies baked from soft (left) and hard (right) wheats which differ only in their *Hardness* gene. Near-isogenic soft (*Ha*) and hard (*ha*) wheat lines were milled and their flours baked using a standard AACC cookie formula.


Food Quality and Preference

Volume 35, July 2014, Pages 41-47

Taking the biscuit: Consumers more sensitive to sugar reductions than fat

By Nicola Cottam , 03-Jun-2014 Last updated on 05-Jun-2014 at 08:42 GMT

Coralie Biguzzi A M. Pascal Schlich, Christine Lange M.

Show more

https://doi.org/10.1016/j.foodqual.2014.02.001

Get rights and content

Fat perception is more complex than sweetness, say researchers

Highlights

- In commercial biscuits, fat reduction is less noticeable than sugar reduction.
- Fat reduction may induce a reduction in sweetness perception.
- Fat or sugar-reduced biscuits perceived as less sweet are less liked than normal ones.
- Fat-reduced biscuits only perceived as less fatty are equally liked as normal ones.